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Real Time Operational Model
Different objectives from planning model
▪ Fast run times (<1min)
▪ Highly accurate (peaks and volume)
▪ Easy to update (monthly updates)
▪ Support failure modes

Nash-Sutcliffe 2013: 0.29
Nash-Sutcliffe 2016: 0.38



From Data to Model

Machine Learning:
“Study and construction of algorithms that can 
learn and make predictions on data” 1

1Ron Kohavi; Foster Provost (1998). "Glossary of terms". Machine Learning 30: 271–274.

Neural Network:
“Machine Learning algorithm inspired on the 
way a human brain works”



Artificial Neural Networks Applications
▪ pattern recognition
▪ driverless cars
▪ crime prevention
▪ speech recognition
▪ medical diagnosis
▪ automated trading systems
▪ e-mail filtering

V.G. Maltarollo et. al, “Applications of Artificial Neural Networks in Chemical Problems”

http://www.tsdconseil.fr/formations/dsp/opencv/index-en.html



Cognitive Hydraulic Response System

▪ Cognitive: it learns from 
observation

▪ Based on sensor data
▪ Utilizes self learning ANN
▪ Abstracts the H/H 

elements with most 
uncertainty



Real Time Modeling starts 
with Real Time Monitoring

Case Study: Lick Run Basin, 
Cincinnati, OH
▪ 4 sq.miles of CSS
▪ 11 flow monitors
▪ 3 rain gauges



Real Time Modeling starts 
with Real Time Monitoring

Case Study: South Bend, IN
▪ 40 sq.miles
▪ 150 sensors
▪ Monitor: 

▪ 36 outfalls, 
▪ 27 interceptor sites
▪ 42 trunkline sites
▪ 5 basins



Data QA/QC

Avoid “garbage in, garbage out”
Eliminate data that has:
▪ Sensor drifting
▪ Maintenance/calibration
▪ Outliers
▪ Flat lined



Training Phase

PAST RAINFALL

PAST FLOW DATA

ARTIFICIAL 
NEURAL NETWORK

compare

error

adjust

Learning process
▪ Utilizes historical data
▪ Data must be diverse
▪ Data must be related



Validation

Ensures that training process 
was successful:
▪ Utilizes data NOT used for 

training
▪ Compares the neural network 

output data to the measured 
output

▪ If validation is unsuccessful 
repeat training with 
new/different data 

training

va
lid

at
io

n



Validation

training validation



Validation



Validation



Integration with SWMM

CHRS is mainly used to 
abstract parts of the model 
where there is uncertainty:
▪ runoff dynamics
▪ upstream sewersheds
▪ subcatchment

Integrate with SWMM
Maintain downstream pipe 
network

before

after



Integration with SWMM
▪ Works at the node level
▪ Simulates inflow
▪ Neural Network description and 

parameters in external file
▪ Neural Network is trained in 

Matlab, parameters transferred 
to SWMM

018C00055_NN.ENN



Result Example

Nash-Sutcliffe 2013  : 0.29
Nash-Sutcliffe 2016  : 0.38
Nash-Sutcliffe CHRS: 0.93



Conclusions

▪ CHRS can produce operational models that are:
▪ fast
▪ self learning
▪ highly accurate

▪ Integration with SWMM allows CHRS to leverage pipe 
network computational engine.

▪ Release as open source in near future.
▪ Work is now focused on how to automatically QA/QC 

sensor data.



Questions?

Contact:
Luis Montestruque
lmontest@emnet.net


